Organization of Multisynaptic Inputs to the Dorsal and Ventral Dentate Gyrus: Retrograde Trans-Synaptic Tracing with Rabies Virus Vector in the Rat

نویسندگان

  • Shinya Ohara
  • Sho Sato
  • Ken-Ichiro Tsutsui
  • Menno P. Witter
  • Toshio Iijima
چکیده

Behavioral, anatomical, and gene expression studies have shown functional dissociations between the dorsal and ventral hippocampus with regard to their involvement in spatial cognition, emotion, and stress. In this study we examined the difference of the multisynaptic inputs to the dorsal and ventral dentate gyrus (DG) in the rat by using retrograde trans-synaptic tracing of recombinant rabies virus vectors. Three days after the vectors were injected into the dorsal or ventral DG, monosynaptic neuronal labeling was present in the entorhinal cortex, medial septum, diagonal band, and supramammillary nucleus, each of which is known to project to the DG directly. As in previous tracing studies, topographical patterns related to the dorsal and ventral DG were seen in these regions. Five days after infection, more of the neurons in these regions were labeled and labeled neurons were also seen in cortical and subcortical regions, including the piriform and medial prefrontal cortices, the endopiriform nucleus, the claustrum, the cortical amygdala, the medial raphe nucleus, the medial habenular nucleus, the interpeduncular nucleus, and the lateral septum. As in the monosynaptically labeled regions, a topographical distribution of labeled neurons was evident in most of these disynaptically labeled regions. These data indicate that the cortical and subcortical inputs to the dorsal and ventral DG are conveyed through parallel disynaptic pathways. This second-order input difference in the dorsal and ventral DG is likely to contribute to the functional differentiation of the hippocampus along the dorsoventral axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential architecture of multisynaptic geniculo-cortical pathways to V4 and MT.

Parallel visual pathways in the primate brain known as the dorsal and ventral streams receive retinal inputs mainly through the magnocellular (M) and parvocellular (P) layers of the lateral geniculate nucleus. Inputs from these layers terminate within distinct parts of layer 4C of V1 (visual area 1). Due to the complexity of M- and P-derived neural connectivity in V1 and higher visual areas, th...

متن کامل

Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques.

The bottom-up processing of visual information is strongly influenced by top-down signals, at least part of which is thought to be conveyed from the frontal cortex through the frontal eye field (FEF) and the lateral intraparietal area (LIP). Here we investigated the architecture of multisynaptic pathways from the frontal cortex to the middle temporal area (MT) of the dorsal visual stream and vi...

متن کامل

Early postnatal maturation in vestibulospinal pathways involved in neck and forelimb motor control.

To assess the organization and functional development of vestibulospinal inputs to cervical motoneurons (MNs), we have used electrophysiology (ventral root and electromyographic [EMG] recording), calcium imaging, trans-synaptic rabies virus (RV) and conventional retrograde tracing and immunohistochemistry in the neonatal mouse. By stimulating the VIIIth nerve electrically while recording synapt...

متن کامل

Effects of parental morphine addiction on long term potentiation of the perforant path to dentate gyrus in rat offsprings

Background: Evidences show that parental morphine addiction impairs CNS development, learning and memory in offsprings. Since long term potentiation (LTP) is a cellular mechanism of learning and memory, in this study the effect of parental morphine addiction on LTP induction in dentate gyrus by high frequency stimulation of perforant path was assessed. Materials and methods: In this experiment...

متن کامل

Paired-Pulse Inhibition and Disinhibition of the Dentate Gyrus Following Orexin Receptors Inactivation in the Basolateral Amygdala

The basolateral amygdala (BLA) has substantial effects on the neuronal transmission and synaptic plasticity processes through the dentate gyrus. Orexin neuropeptides play different roles in the sleep/wakefulness cycle, feeding, learning, and memory. The present study was conducted to investigate the function of the orexin receptors of the BLA in the hippocampal local interneuron circuits. For t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013